Microfluidic mixing via transverse electrokinetic effects in a planar microchannel

نویسندگان

  • N. Scott Lynn
  • David S. Dandy
چکیده

A new micromixer incorporating integrated electrodes deposited on the bottom surface of a glass/ PDMS microchannel is used to induce a localized, perpendicular electric field within pressure driven axial flow. The presence of the electric field drives electro-osmotic flow in the transverse direction along the channel walls, creating helical motion that serves to mix the fluid. A numerical model is used to describe the three-dimensional flow field, where characterization is performed via particle tracking of passive tracer particles, and the conditional entropy (Slc) is utilized to approximate the extent of mixing along cross-sectional planes. The geometrical parameters and operating conditions of the numerical model are used to fabricate an experimental device, and fluorescence microscopy measurements are used to verify mixing of rhodamine B across the width of the microchannel for a wide range of fluid flow rates. The results demonstrate that under certain operating conditions and selective placement of the electrode gaps along the width of the microchannel, efficient mixing can be achieved within 6 mm of the inlet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waste water ammonia stripping intensification using microfluidic system

This paper reports the results of experimentally removing ammonia from synthetically prepared ammonia solution using a micro scale mixing loop air stripper. Effects of various operational parameters (such as: pH, air flow rate, wastewater flow rate and initial ammonia concentration) were evaluated. By increasing the pH from 10 to 12.25 the amount of KLa increased from 0.26 to 0.73 hr-1. A consi...

متن کامل

Two-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)

The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...

متن کامل

Fluid Mixing Control inside a Y-shaped Microchannel by Using Electrokinetic Instability

An experimental study was conducted to further our understanding about the fundamental physics of electrokinetic instability (EKI) and to explore the effectiveness to enhance fluid mixing inside a Y-shaped microchannel by manipulating convective EKI waves. The dependence of the critical voltage of applied static electric field to trig EKI to generate convective EKI waves on the conductivity rat...

متن کامل

Propionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer

In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber ‎ number and surface-to-volume ratio were ca...

متن کامل

Electrokinetic instability in microchannel ferrofluid/water co-flows

Electrokinetic instability refers to unstable electric field-driven disturbance to fluid flows, which can be harnessed to promote mixing for various electrokinetic microfluidic applications. This work presents a combined numerical and experimental study of electrokinetic ferrofluid/water co-flows in microchannels of various depths. Instability waves are observed at the ferrofluid and water inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008